SYNTHESIS AND REACTIONS OF 1,2-BENZOXATHIAN-4-ONE 2-OXIDES

W. Barbieri, L. Bernardi, S. Coda and A. Vigevani

Istituto Ricerche Farmitalia, 20146 Milano - Italy

(Received in UK 18 November 1971; accepted for publication 24 November 1971)

1,2-Benzoxathianes form a little known class of substances⁽¹⁾: the synthesis of 1,2-benzo= xathian 2-oxide has only recently been reported by Givens and Hamilton, who described it as a pretty unstable compound⁽²⁾ and no accounts have so far appeared on the synthesis of 1,2-benzo= xathian-4-one 2-oxide, a cyclic ester of a δ -hydroxy- β -ketosulfinic acid⁽³⁾.

We wish to report here the synthesis and some reactions of a group of stable, crystalline 1,2-benzoxathian-4-one 2-oxides (I, II, III), which can be easily obtained by refluxing the corresponding hydroxy ketones (IV, V, VI) with four parts of SOCl₂ for 1 hr⁽⁴⁾.

Treatment of IV with SOC1₂ yielded a compound $C_{10}H_{10}O_3S(I)$, m.p. 113° (EtOH), whose IR spectrum shows strong bands at 1685 (carbonyl) and 1135 cm⁻¹ (sulphinate group)⁽⁵⁾. The PMR spectrum (CDC1₃) shows the expected AB pair of doublets (3.69 and 4.155; $J_{gem} = 15.1$ Hz), since the geminal protons are non-equivalent owing to the presence of the chiral SO group. Oxidation of I with H_2O_2 in AcOH⁽²⁾ afforded the 2,2-dioxide, m.p. 141°, whose IR spectrum shows three strong sulfonyl bands at 1380, 1180 and 1150 cm⁻¹⁽²⁾. The PMR spectrum (CDC1₃) shows a singlet at 4.315(2H) due to the two, now equivalent, geminal protons.

Treatment of VI with SOCl₂, likewise yielded III, m.p. 56° (pet. ether) (IR bands at 1685 and 1135 cm⁻¹), whose PMR spectrum shows the presence of two non-equivalent aliphatic CH_3 groups (CDCl₂; 1.51 and 1.57 d).

Treatment of V with SOCl₂, followed by crystallization from EtOH, gave II A, m.p. 117° who= se PMR spectrum shows the expected signals for the CHCH₃ group (CDCl₃; CH₃: d, 1.49 ó; CH : q, 4.10 ó). From the mother liquors a minor component, m.p. 86-89°, was isolated: its PMR spectrum shows that this compound is a 1:1 mixture of II A and its epimer II B (CDCl₃; CH₃: d, 1.58 ó; CH: q, 3.56 ó). On attempted separation of the two epimers by chromatography on Al₂O₃, comple= te decomposition occurred: one white crystalline compound C₂₂H₂₂O₄S₂, m.p. 164°, was isolated from the first chromatographic fractions and to it structure VII was assigned on the following crounds. The IR spectrum shows a band at 1705 cm⁻¹ (conjugated CO in a strained ring) and no OH bands; the UV spectrum shows maxima at 272 and 334 nm, unchanged by addition of NaOH; the PMR spectrum (CDCl₃) shows, besides the Ar-CH₃ signals at 2.33 and 2.51 δ , a singlet at 1.66 δ , assigned to the two C^{IV}-CH₃ groups.

Although the 1,2-benzoxathian-4-one 2-oxides are relatively stable in protic solvents, they are easily decomposed by bases. Treatment of III with NaOH/EtOH at room temp gave VI and Na₂SO₃, whereas II yielded, beside some V and Na₂SO₃, a white crystalline compound $C_{11}H_{12}O_3$, m.p. 122-124°, to which structure VIII⁽⁶⁾ has been assigned on the basis of the UV (λ max 268 and 333 nm; unchanged by addition of NaOH), IR (GH_2CI_2 ; 3570 (OH) and 1720 cm⁻¹ (CO, aromatic)⁽⁷⁾) and PMR ($CDCl_3$; s, 1.62 é, C^{IV}-CH₃) spectra. Treatment of I with NaOH or piperidine, at reflux temp, yielded, besides some sulfur, a compound $C_{10}H_8O_3$, m.p. 145-147°, to which the structure of 4,6-dimethylcoumaran-2,3-dione (IX) (1it.⁽⁹⁾ m.p. 145°) has been assigned on the basis of the PMR ($CDCl_3$; 2.45 and 2.56 é, Ar-CH₃ groups; 6.84 and 6.91 é, aromatic protons) and IR (1820 cm⁻¹, strained lactone; 1730 cm⁻¹, five-member ring ketone; no OH bands) spectra.

REFERENCES AND NOTES

- 1) D.S. Breslow and H. Skolnik; "Multi-sulfur and sulfur and oxygen five- and six-membered heterocycles" (A. Weissberger ed.) Interscience Publishers, New York, p. 792 (1966).
- 2) E. N. Givens and L.A. Hamilton, J. Org. Chem., 32, 2857 (1967).
- W.L. Truce and C.W. Vriesen (J. Am. Chem. Soc., 75, 2525 (1953)) were unsuccessful in obta= ining a β-chetosulfinic acid by reduction of ω. acetophenonesulfonyl chloride.
- 4) Yields decrease considerably by using a larger excess of SOCl₂ or longer reaction time. Simple o.acyl phenols, such as o.hydroxyacetophenone yield a very complex mixture and although the presence of 1,2-benzoxathian-4-one 2-oxide can be detected in the PMR spectrum (CDCl₃; dd at 3.77 and 4.346; J_{prem} 14.0 Hz), we have been unable to isolate a pure product.
- 5) D. Darwish and E.A. Preston, <u>Tetrahedron Letters</u>, 113 (1964).
- 6) K.V. Auwers and W. Muller (Ber., 50, 1149 (1917)) report m.p. 115-117°.
- 7) A strong band is also present at 1610 cm⁻¹. A similar, unexplained band, has been pre= viously reported⁽⁸⁾ in the case of coumaranone.
- A.K. Bose and P. Yates, <u>J.Am. Chem. Soc</u>. <u>74</u>, 4703 (1952).
- 9) K. Fries and Bartens, Liebigs Ann. Chem. 442, 265 (1925).